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Abstract
This article is intended for undergraduate students in exact sciences. The objective of this work is to determine in a didactic and detailed way the 
equations of motion  and  of an electrically charged particle that moves in a region with an electromagnetic field, with given initial conditions, 
considering the electric field  in the  plane and the magnetic field  in the direction of the  axis. Using the Lorentz force, second-order differential 
equations for velocity and position are obtained, which are solved by integration methods.
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Resumo
Este artigo é destinado a estudantes de graduação em ciências exatas. O objetivo desse trabalho é determinar de forma didática e bem 
detalhada as equações de movimento  e  de uma partícula eletricamente carregada que se move em uma região com campo eletromagnético, 
com condições iniciais dadas, considerando o campo elétrico  no plano  e o campo magnético  na direção do eixo . Utilizando a força de 
Lorentz são obtidas equações diferenciais de segunda ordem para a velocidade e posição, que são solucionadas por métodos de integração.
Palavras-chave: Campo Elétrico. Campo Magnético. Equações de Movimento. Campo Eletromagnético. Cicloide. Trajetória Helicoidal.
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1 Introduction

This article addresses the motion of an electrically charged 
particle within a region of space containing both electric and 
magnetic fields. Key insights into the behavior of this particle 
are derived through classical treatment.

The particle’s trajectory together with the force to which 
it is subjected depend on how this charged particle enters this 
region and the configuration of the electric  and magnetic  fields 
(REITZ, 1960). The objective of this work is to determine the 
equations of motion  and  of an electrically charged particle, 
with given initial conditions, considering the electric field  in 
the  plane and the magnetic field  in the direction of the  axis. 
Using the Lorentz force, second-order differential equations 
for velocity and position are obtained, which are solved by 
integration methods.

In Section 2 the theoretical method used in this work is 
presented and in Section 3 the equations of motion for the 
particle are obtained. Section 4 is reserved for conclusions and 
final comments.

2 Development

2.1 Theoretical treatment

It is known that a particle with charge  in the presence 
of an electric field is subjected to an electric force  given by 

(Vanderlinde, 2004; Meyer, 1972):

01

where the electric force will have the same direction 
and direction as the electric field for  and will have the same 
direction and opposite direction of  for .

When entering a region with the presence of a magnetic 
field , a particle with an electric charge  will be subject to a 
force called magnetic force , which will depend on the way 
in which depends on the manner in which the particle gains 
access to this region. The magnetic force to which a particle 
with an electric charge  is subjected is given by (Zangwill, 
2012):

02

The vector product  present in Eq. (2) tells us that the 
direction of  is perpendicular to the vectors  and . Therefore, in 
regions where fields  and  are present, the electrically charged 
particle is subjected to an electromagnetic force , also known 
as Lorentz force, which is a force resulting from the sum of 
the forces  and , that is (Jackson, 1998):

03

In the next section, we will apply Eq. (3) in a specific 
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situation, which holds significant physical importance. To 
elaborate further, we’ll delve into the practical implications 
of this equation and explore its relevance within a specific 
context.

2.2 Motion in electromagnetic field

We will deal here with the situation in which a particle of 
charge  and mass  is launched into a region where there is an 
electric and magnetic field given by:

04

and
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and considering the initial speed of the particle to be , that 
is, the particle is launched in the  plane. Solving the vector 
product  of Eq. (3), we have:

Considering this last equation and Eq. (5), Eq. (3) becomes:

The components of acceleration  are:

06

where the dot over the letter indicates the derivative with 
respect to time , as follows:

Defining:

07

Note that using the SI units,  is charge (in coulombs),  is 
magnetic field (in teslas), and  is mass (in kilograms):

The dimensions for charge (C), magnetic field (T), and mass 
(Kg) are respectively: ,  
, and . Substituting these dimensions:

Simplifying, we get:

Therefore,  is equivalent to the dimension of frequency 
(). In SI units, it represents , which is a measure of angular 
frequency.

And from the vector equality in the previous equation to 
Eq. (7), we have:

08

 09

10

Eq. (10) is easy to solve, since  is a 
constant. Thus, the equations governing the motion of the 
-component are those of uniformly accelerated motion, 
equations well-established in the study of kinematics (Santos, 
2022). In fact, by Eq. (10):

11

The  component of the position can be obtained by 
integrating Eq. (11):

12

Let us now determine the equations of motion  and . 
Deriving Eq. (8) in relation to time, yields:

13

Inserting Eq. (9) into Eq. (13), we obtain:

14

This is an inhomogeneous differential equation, whose 
general solution is (for its detailed solution see Appendix A):

Just for simplicity in the following developments, we set, 
indicating a choice for the initial phase of the function. In this 
manner:
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15

It can be seen from the expression above that the speed
is a periodic function with and

. Fig. 1 shows the graph of the function
for , and .

Figure 1 - Graph of the  component of velocity as a function of 
time

Source: the author.

To determine the  component of the position, we integrate 
Eq. (15):

16

Unlike the function , the function  has no upper or lower 
limit. Fig. 2 shows the graph of the function  for , ,  and .

Figure 2 - Graph of position  as a function of time

Source: the author.

Let us now determine the  component of the velocity. 
Inserting Eq. (15) into Eq. (9), we have:

remembering that , in the equation above the last term to the 
right of the equality cancels with the first term , yields:

17

Figure 3 shows the graph of the function  for  and .

Figure 3 - Graph of component of velocity: 

Source: the author.

To obtain the  component of the position, we simply 
integrate Eq. (17):

18

It can be observed from the above expression that 
the  component of the position is a periodic function 
constrained between a minimum and a maximum 
point. Figure 4 depicts the graph of the function  for 
and .
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For specific values of the constants , , and , the projection 
of the movement on the  plane is a cycloid (see Appendix B).

Another interesting specific scenario is if . In this case, 
Eqs. (18) and (16) become:

which represent the equation of a circle (Leithold, 1982) 
with center at , with  and . Note that:

that is, the radius  of the circumference is:
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The speed  in the  plane in this case of  is (see Eqs. (15) 
and (17)):

whose module is:

That is,  is a constant that is the particle velocity modulus 
in the  plane. Using Eq. (19) we have:

20

Note also that the acceleration in the  plane with  is:

whose absolute value is:

Figure 4 - Graph of the  component of position as a function of 
time

Source: the author.

Summarizing, for an electrically charged particle with a 
charge  and a mass  entering an electromagnetic field given 
by Eqs. (4) and (5), and considering , we obtain the particle 
speed , with:

15

17

11

and the position of the particle , with:

16

18

12

It is interesting to study the projection of movement in the  
plane, whose shape will depend on the  ratio. Considering , 
, and , Fig. 5 shows some possibilities: Figure 5(a): ; Figure 
5(b): ; Figure 5(c): ; Figure 5(d): .

Figure 5 - Graph of  versus  for (a): ; (b) ; (c) ; (d) 

Source: the author.
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By Eq. (20) we have that , and the previous equation is:

21

with  being the well-known centripetal acceleration 
(SERWAY; JEWETT, 2018).

The velocity component , given by Eq. (11), parallel to 
the magnetic field  causes the particle to move in the same 
direction as the magnetic field. In this scenario, where , the 
particle trajectory is helical with the axis in the same direction 
as the magnetic field , as illustrated in Figure 6.

Figure 6 - The particle describes a helical trajectory of radius .

Source: Duarte (2024).

3 Conclusion 

The general objective of this work was to determine the 
equations of motion of a particle with an electric charge  and 
mass  moving in an electromagnetic field. To this end, a quick 
theoretical review was made of the electrical and magnetic 
forces that act on a charged particle due to the action of 
these fields. The components of velocity () and position () 
were then determined and analyzed. The particular case was 
adopted in which the electric field  is in the  plane () and the 
magnetic field  in the direction of the  axis (), considering the 
initial speed of the particle , that is, the particle is launched 
in the  plane. By applying the Lorentz force, second-order 
differential equations are derived and subsequently solved 
using integration methods. The shape of the motion curve 
projected on the  plane depends on the  ratio. The velocity 
component , given by Eq. (11), parallel to the magnetic 
field  causes the particle to move in the same direction as 
the magnetic field, and in the situation where  the particle 
trajectory it is helical with the axis in the same direction as the 
magnetic field . Despite having been applied to a particular 
case of electric () and magnetic () fields, the method used here 
can be applied to several other situations of charged particles 
moving in electromagnetic fields. The book of João Barcelos 
Neto (NETO, 2004) determines the same equations obtained 
in this article, however in a different way.

Appendix A
Eq. (14) is a non-homogeneous second-order differential 
equation with constant coefficients, of the type (RODRIGUES, 
2017)

whose solution is

where is the solution of the homogeneous differential 
equation and is a particular solution of Eq. (A1). The 
solution of the homogeneous equation is:

and

where and can be determined by the indicial equation:

Comparing the coefficients of Eq. (A1) with Eq. (14), the 
indicial equation (A4) takes the form:

and

Inserting and into Eq. (A3a) we have:

Using Euler’s formula (BUTKOV, 1973):

defining e :

Comparing Eq. (A1) with Eq. (14) it is noted that: is a 
constant, that is, . Thus, after substituting 

, it can be verified by inspection that the particular 
solution . Inserting and in Eq. (A2) we 
have:

Appendix B
A cycloid is the curve traced by a point on a circle as it rolls 
along a straight line without slipping (FLORIAN, 1999). The 
parametric equations for a cycloid are:

and

Let Eq. (16) be with :

Considering the specific case in which :

Defining: and :

which is equal to Eq. (B1). For , Eq. (18) becomes:

which is equal to Eq. (B2). Therefore, for the specific case in 
which , the projection of the movement on the 
plane is a cycloid. Fig. 7 shows versus for , , 
and .



43Uniciencias, v.28, 2023

Figure 7 - Graph of  versus  (a cycloid).

Source: the author.
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