Influência do CO2 no Crescimento de Haematococcus Pluvialis e na Produção de Carotenoides
DOI:
https://doi.org/10.17921/1415-5141.2018v22n3Espp25-29Resumo
O crescimento celular da microalga de água doce Haematococcus pluvialis e a bioprodução de carotenoides são influenciados pelas diferentes condições de cultivo, como deficiência de nutrientes, iluminância, aeração, agitação, temperatura e pH, alterando sua morfologia celular e produzindo cistos avermelhados (carotenogênese). A aeração nos cultivos de microalgas está relacionada a alguns fatores que influenciam no crescimento celular. As microalgas absorvem e utilizam CO2 como a principal fonte de carbono no crescimento celular. Logo, a biossíntese de pigmentos pode ocorrer pela limitação do nitrogênio em presença de excesso de fontes de carbono. O objetivo desse trabalho foi investigar a influência do emprego de CO2 na aeração do cultivo da microalga Haematococcus pluvialis sob o crescimento celular e a bioprodução de carotenoides. No cultivo foi utilizado o meio mixotrófico BBM (Bold Basal Medium) e acetato de sódio, empregando 20% de inóculo em pH inicial de 7,0, aeração de 0,30 L.min-1, com 30% de injeção de CO2 uma vez ao dia durante 1 h, sob iluminância de 6 klux, à 25 ºC durante 22 dias. Nestas condições o crescimento celular alcançou o máximo de 1,13±0,39 g.L-1 (10 dias) e os carotenoides totais 2949,91±988,65 µg.g-1, onde foi observado que a suplementação de CO2 como fonte de carbono dissolvida no meio de cultivo pode influenciar o crescimento celular e os carotenoides totais.
Palavras-chave: Microalga. Pigmento. Aeração. Cultivo.
Abstract
The cellular growth of the freshwater microalgae Haematococcus pluvialis and the bioproduction of carotenoids are influenced by the different culture conditions, such as nutrient deficiency, illuminance, aeration, agitation, temperature and pH, altering its cellular morphology and producing reddish cysts (carotenogenesis). Aeration in microalgae cultures is related to some factors that influence cell growth. Microalgae absorb and utilize CO2 as the main source of carbon in cell growth. Therefore, the biosynthesis of pigments can occur by the limitation of nitrogen in the presence of excess carbon sources. The objective of this work was to investigate the influence of the use of CO2 on the aeration of the microalgae Haematococcus pluvialis under cell growth and bioproduction of carotenoids. In the culture, mixotrophic medium BBM (Bold Basal Medium) and sodium acetate were used, using 20% of inoculum at initial pH of 7.0, aeration of 0.30 L.min-1, with 30% of CO2 injection once a day for 1 h under 6 Klux illuminance at 25 ° C for 22 days. Under these conditions the cell growth reached a maximum of 1.13 ± 0.39 g. L-1 (10 days) and the total carotenoids
2949.91 ± 988.65 μg.g-1, where it was observed that CO2 supplementation as a source of carbon dissolved in the culture medium may influence cell growth and total carotenoids.
Keywords: microalgae; pigment; aeration; cultivation.
Referências
AOAC – Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International. 17th. v. II., Virginia, 2000.
BIBEAU, E. Microalgae Technologies & Processes for Biofuels/Bioenergy Production in British Columbia. 2009.
BORZANI, W. et al. Biotecnologia industrial. São Paulo: Edgard Blücher, 2001.
BOUSSIBA, S. Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol. Plant., v.108, p.111-117, 2000.
BOUSSIBA, S.; VONSHAK, A. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol., v.32, p.1077-1082, 1991.
CHEN, G. et al. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae). Plant J., v.81, n.1, p.95-107, 2015.
DAVIES, B.H. Carotenoids. In: GOODWIN, T.W. Chemistry and biochemistry of plant pigments. New York: Academic Press London, 1976. p.38-165.
DEL-RIO, E. et al. Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol. Bioeng., v.91, n.7, 2005.
DOMINGUEZ-BOCANEGRA, A.R. et al. Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresour. Technol., v.92 p.209-214, 2004.
DOMINGUEZ-BOCANEGRA, A.R. et al. Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: a comparative study. Appl. Microbiol. Biotechnol., v.75, p.783-791, 2007.
DROOP, M.R. Conditions governing haematochrome formation and loss in the alga Haematococcus pluvialis Flotow. Arch. Mikrobiol., v.20, n.4, p.391-397, 1954.
EDMONDSON, W. T. Freshwater algae: Their microscopic world explored (H. Canter‐Lund and JWG Lund). Limnol. Oceanogr., v.41, n.1, p.194-195, 1996.
FABREGAS, J. et al. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl. Microbiol. Biotechnol., v.53, p.530-535, 2000.
GALVÃO, R.M. et al. Modeling of biomass production of Haematococcus pluvialis. Appl. Math., v.4, n.8A, p.50-56, 2013.
GRIMA, E.M. et al. A study on simultaneous photolimitation and photoinhibition on dense microalgal cultures taking into accout incident and average irradiances. J. Biotechnol., v.45, p.59-69, 1996.
JIMENEZ, C. et al. Augmentation of microalgae growth due to hydrodynamic activation. Energy Convers. Manag., v.36, p.725-728, 2003.
KANG, C.D. et al. Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl. Microbiol. Biotechnol., v.68, p.237-241, 2005.
KOBAYASHI, M.; KURIMURA, Y.; TSUJI, Y. Light-independent, astaxanthin production by green microalga Haematococcus pluvialis under salt stress. Biotechnol. Letters, v.19, p.507-509, 1997.
KWAK, H.S.; KIM J.J.; SIM, S.J. A microreactor system for cultivation of Haematococcus pluvialis and astaxanthin production. J. Nanosci. Nanotechnoly, v.15, n.2, p.1618-1623, 2015.
LOURENÇO, S.O. Cultivo de microalgas marinhas: princípios e aplicações. São Carlos: Rima, 2006.
MICHELON, M. et al. Extraction of carotenoid from Phaffia Rhodozyma: a comparison between different techniques of cell disruption. Food Sci. Biotechnol., v.21, p.1-8, 2012.
ONCEL, S.S. et al. Comparison of different cultivation modes and light intensities using mono-cultures and co-cultures of Haematococcus pluvialis and Chlorella zofingiensis. J. Chem. Technol. Biotechnol., v.86, p.414-420, 2010.
PANIS, G., CARREON, J. R. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res., v.18, p.175-190, 2016.
PEREZ-GARCIA, O. et al. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res., v.25, p.11-36, 2011.
RICHMOND, A. Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell, 2004.
RODRIGUEZ-AMAYA, B.B. A guide to carotenoid analysis in food. Washington: ILSI, 2001.
RODRÍGUEZ-MEIOZO, I. et al. Pressurized liquids as an alternative process to antioxidant carotenoids extraction from Haematococcus pluvialis microalgae. Food Tech., v.43, p.105-112, 2010.
SEDMAK, J.J.; WEERASINGHE, D.K.; JOLLY, S.O. Extraction and quantitation of astaxanthin from Phaffia rhodozyma. Biotechnol. Tech., v. 4, p.107-112, 1990.
SHAH, M. et al. Astaxanthin-producing green microalgae Haematococcus pluvialis: from single cell to high value commercial products. Front. Plant. Sci., v.7, p.531, 2016.
SARADA, R., BHATTACHARYA, S., RAVISHANKAR, G. A. Optimization of culture conditions for growth of the green alga Haematococcus pluvialis. World J. Microbiol. Biotechnol., v. 18, n.6, p. 517-521, 2002.
TRIPATHI, U. et al. Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresour. Technol., v.68, p.197-199, 1999.
YUAN, J.P. et al. Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol. Nutr. Food Res., v.55, p.150-165, 2011.