Epidemiologia da Norovirose e Estudo do Papel do Cão como Reservatório para este Agente Zoonotico
DOI:
https://doi.org/10.17921/1415-5141.2019v23n1p2-11Resumo
Os norovírus foram os primeiros agentes virais ligados a doenças gastrointestinais em humanos. Por muito tempo, foram considerados como causa secundária de gastroenterite, após o rotavírus. O desenvolvimento de técnicas moleculares favoreceu dados mais claros sobre o impacto epidemiológico dos norovírus, que são atualmente reconhecidos como principal causa de surtos de gastroenterite não bacteriana esporádica em crianças e adultos. Em análise da diversidade genética e recombinação dos norovírus sabe-se que os mesmos estão presentes em várias espécies animais, incluindo os cães, o que denota na possível exposição dos seres humanos a estas novas cepas recém-descobertas. Devido à intensa relação social atualmente observada entre humanos e animais de estimação, sugerem-se novas investigações sobre o potencial zoonótico deste norovírus. O método de pesquisa utilizado neste trabalho foi uma revisão de literatura, que teve como objetivo revisar toda literatura atual sobre a epidemiologia e relevância do cão como potencial reservatório para este agente. Ainda são poucos os relatos sobre a presença do norovírus em cães, que podem apresentar um potencial de transferência zoonótica, porém devido à sua maior proximidade com os seres humanos na atualidade, considera-se a importância de novos estudos para avaliar o papel do cão como reservatório do norovírus, em especial no Brasil, pela inexistência de relatos até o presente momento.
Palavras-chave: Cães. Gastroenterite não Bacteriana. Risco Zoonótico.
Abstract
Noroviruses were the first viral agents linked to gastrointestinal diseases in humans. For a long time, they were considered as secondary cause of gastroenteritis after rotavirus. The development of molecular techniques has favored clearer data on the epidemiological impact of noroviruses, which are currently recognized as the main cause of outbreaks of sporadic non-bacterial gastroenteritis in children and adults. In analyzing the genetic diversity and recombination of noroviruses it is known that they are present in several animal species, including dogs, which denotes the possible exposure of humans to these newly discovered strains. Due to the intense social relationship currently observed between humans and pets, further research on the zoonotic potential of this norovirus is suggested. The research method used is a review of the literature, which aimed to review all current literature on the epidemiology and relevance of the dog as potential reservoir for this agent. There are still few reports on the presence of norovirus in dogs, which may present a potential for zoonotic transfer, but due to its greater proximity to humans nowadays, the importance of new studies to evaluate the role of the dog as norovirus reservoir, especially in Brazil, due to the lack of reports to date.
Keywords: Dog. Nonbacterial Gastroenteritis. Zoonotic Potential.
Referências
AMARAL, M.S.C. et al. The prevalence of norovirus, astrovirus and adenovirus infections among hospitalised children with acute gastroenteritis in Porto Velho, state of Rondônia, western Brazilian Amazon. Memórias do Instituto Oswaldo Cruz, v.110, n.2, p.215-221, 2015. doi: 10.1590/0074-02760140381
ARAGÃO, G.C. et al. Norovirus diversity in diarrheic children from an african-descendant settlement in Belém, Belém, Brasil. Public Library Scie. One, v.8, n.2, e56608, 2013.
ARAGÃO, G.C. et al. Molecular characterization of norovirus, sapovirus and astrovirus in children with acute gastroenteritis from Belém, Pará, Brazil. Rev. Pan-Amaz. Saúde, v.1, n.1, p.149-158, 2010.
ATMAR, R.L. et al. Detection of norwalk virus and hepatitis a virus in shellfish tissues with the PCR. Appl. Environ. Microbiol., v.61, n.8, p.3014-3018, 1995.
ATMAR, R.L.; ESTES, M.K. The epidemiologic and clinical importance of norovirus infection. Gastroenterol. Clin. North Am., v.35, p.275-290, 2006.
AZEVEDO, M. et al. Detection of norovirus in dogs in Arkansas. Am. Soc. Virol. Conference, p.23-30, 2012.
BAERT, L. et al. Reported foodborne outbreaks due to noroviruses in Belgium: the link between food and patient investigations in an international context. Epidemiol. Infec., v.137, n.3, p.316-325, 2009.
BALL, J.M. et al. Recombinant Norwalk virus-like particles given orally to volunteers: phase I study. Gastroenterology, v.117, n.1, p.40-48, 1999.
BULL, R.A. et al. Norovirus Recombination in ORF1/ORF2 Overlap. Emerg. Infec. Dis., v.11, n.7, p.1079-1085, 2005
.
CASTILHO, J.G. et al. Genetic diversity of norovirus among children with gastroenteritis in Sao Paulo State, Brazil. J. Clin. Microbiol., v.44, n.11, p.3947-3953, 2006.
CHANG, K.O.; GEORGE, D.W. Interferons and ribavirin effectively inhibit norwalk virus replication in replicon-bearing cells. J. Virol., p.12111-12118, 2007.
CHAO, D.Y. et al. Detection of multiple genotypes of calicivirus infection in asymptomatic swine in Taiwan. Zoonoses Public Health, v.59, n.6, p.434-444, 2012.
CHEETHAM, S. et al. Binding patterns of human norovirus-like particles to buccal and intestinal tissues of gnotobiotic pigs in relation to A/H histo-blood group antigen expression. J. Virol., p.3535-3544, 2007.
CHEETHAM, S. et al. Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J. Virol., p.10372-10381, 2006.
CHIBA, S. et al. Sapporo virus: history and recent findings. J. Infec. Dis., v.181, p.303-308, 2000.
CHOMEL, B.B.; SUN, B. Zoonoses in the Bedroom. Emerg. Infec. Dis., v.17, n.2, p.167-172, 2011.
COSTANTINI, V.G.L. et al. Diagnostic accuracy and analytical sensitivity of IDEIA norovirus assay for routine screening of human norovirus. J. Clin. Microbiol., p.2770-2778, 2010.
DANIELS, N.A.; BERGMIRE-SWEAT, D.A.; SCHWAB, K.J. A foodborne outbreak of gastroenteritis associated with norwalk‐like viruses. J. Infec. Dis., p.1467-1470, 2000.
DASTJERDI, A.M. et al. The bovine newbury agent-2 is genetically more closely related to human SRSVs Than to animal caliciviruses. Virology, v.254, n.1, p.1-5, 1999.
DINGLE, K.E. et al. Human enteric Caliciviridae: the complete genome sequence and expression of virus-like particles from a genetic group II small round structured virus. J. General Virol., v.76, n.9, p.2349-2355, 1995.
DONALDSON, E.F. et al. Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunol. Rev., v.225, n.1, p.190-211, 2008.
DUIZER, E. et al. Laboratory efforts to cultivate Noroviruses. J. General Virol., v.85, p.79-87, 2004.
FANKHAUSER, R.L. et al. Molecular epidemiology of ‘‘Norwalk-like viruses’’ in outbreaks of gastroenteritis in the United States. J. Infec. Dis., v.178, p.1571-1578, 1998.
FARKAS, T. et al. Seroprevalence of noroviruses in swine. J. Clin. Microbiol.. v.43, p.657–661, 2005.
FERNÁNDEZ, K.P. et al. Norovirus, the principal cause of viral diarrhea in two regions of Colombia. Univ Scie., v.20, n.1, p.107-115, 2014.
FERREIRA, M.S.R. et al. Surveillance of norovirus infections in the state of Rio de Janeiro, Brazil 2005-2008. J. Med. Virol., n.8, p.1442-1448, 2010.
GREEN, K.Y. Caliciviridae: the noroviruses. In: KNIPE, D.M., HOWLEY, P.M. Fields virology. Philadelphia: Lippincott Williams and Wilkins, 2007. p. 949-979.
GREEN, K.Y. et al. Taxonomy of the Caliciviruses. J. Infec. Dis., v.181, n.2, p.322-330, 2000.
Green, S.M. et al. Human enteric Caliciviridae: a new prevalent small round-structured virus group defined by RNA-dependent RNA polymerase and capsid diversity. J. Gen. Virol., v.75, n.8, p.1883-1888, 1994.
GUERRERO, R.A., et al. Recombinant norwalk virus-like particles administered intranasally to mice induce systemic and mucosal (fecal and vaginal) immune responses. J. Virol., v.75, n.20, p.9713-9722, 2001.
GUYADER, F.S.L. et al. Norwalk virus: specific binding to oyster digestive tissues. Emerg. Infec. Dis., v.12, n.6, p.931-936, 2006.
HUMPHREY, T.; CRUICKSHANK, J.; CUBITT, W. An outbreak of calicivirus associated gastroenteritis in an elderly persons home. A possible zoonosis. J. Hyg., v.92, n.1, p.293-299, 1994.
HUTSON, A.M. et al. Norwalk virus infection and disease is associated with ABO Histo-Blood Group Type. J. Infec. Dis., v.185, n.9, p.1335-1337, 2002.
JIANG, X. et al. Sequence and genomic organization of norwalk virus. Virology, v.195, n.1, p.51-61, 1993.
JIANG, X. et al. Diagnosis of human caliciviruses by use of enzyme immunoassays. J. Infec. Dis., n.2, p.349-359, 2000.
KAPIKIAN, A.Z. The discovery of the 27‐nm norwalk virus: an historic perspective. J. Infec. Dis., v.181, n.2, p.295-302, 2000.
KAPIKIAN, A.Z. et al. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J. Virol., v.10, n.5, p.1075-1081, 1972.
LEWIS, H.C. et al. Hepatitis e in england and wales. Emerg. Infec. Dis., v.14, n.1, p.165-167, 2008.
LOPMAN, B.A; BROWN, D.W; KOOPMANS, M. Human caliciviruses in Europe. J. Clin. Virol., v.24, n.3, p.137-160, 2002.
MARIONNEAU, S. et al. ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie, v.83, n.7, p.565-573, 2001.
MARTELLA, V. et al. Genetic heterogeneity and recombination in canine noroviruses. J. Virol., v.83, n.21, p.11391-11396, 2009.
MARTELLA, V. et al. Detection and molecular characterization of a canine norovirus. Emerg. Infect. Dis., v.14, n.8, p.1306-1308, 2008.
MARTINO, B. et al. Seroprevalence of norovirus genogroup iv antibodies among humans, Italy, 2010–2011. Emerg. Infec. Dis., v.20, n.11, p.1828-1832, 2014
MATTISON, K. et al. Human noroviruses in swine and cattle. Emerg. Infect. Dis., v.13, n.8, p.1184-1188, 2007.
MENON, V.K. et al. Exposure to Human and Bovine Noroviruses in a Birth Cohort in Southern India from 2002 to 2006. J. Clin. Microbiol., v.51, n.7, p.2391-2395, 2013.
MESQUITA, J.R. et al. Novel norovirus in dogs with diarrhea. Emerg. Infect. Dis., v.16, n.6, p.980-982, 2010.
MESQUITA, J.R.; NASCIMENTO, M.S.J. Gastroenteritis outbreak associated with faecal shedding of canine norovirus in a portuguese kennel following introduction of imported dogs from Russia. Transboundary Emerg. Dis., v.59, n.5, p.456-459, 2011.
MESQUITA, J; NASCIMENTO, M. S. Molecular epidemiology of canine norovirus in dogs from Portugal, 2007–2011. BMC Vet. Res., v.8, n.1, p.107, 2012.
MONICA, B. et al. Human caliciviruses in symptomatic and asymptomatic infections in children in Vellore, South India. J. Med. Virol., v.79, n.5, p.544-551, 2007.
MORILLO, S.G.; TAVARES-TIMENETSKY, M.C.S. Norovírus: uma visão geral. Rev. Assoc. Méd. Bras., v.57, n.4, p.462-467, 2011.
MURRAY, J.K. et al. Number and ownership profiles of cats and dogs in the UK. Vet. Record, v.166, n.6, p.163-168, 2010.
NTAFIS, V. et al. Outbreak of canine norovirus infection in young dogs. J. Clin. Microbiol., v.48, n.7, p.2605-2608, 2010.
OLIVER, S.L. et al. Molecular characterization of bovine enteric caliciviruses: a distinct third genogroup of noroviruses (norwalk-like viruses) unlikely to be of risk to humans. J. Virol., v.77, n.4, p.2789-2798, 2003.
OLIVER, S.L. et al. Genomic characterization of the unclassified bovine enteric virus Newbury agent-1 (Newbury1) endorses a new genus in the family Caliciviridae. Virol., v.350, n.1, p.240-250, 2006.
OZAWA, K. et al. Norovirus infections in symptomatic and asymptomatic food handlers in Japan. J. Clin. Microbiol., v.45, n.12, p.3996-4005, 2007.
PALMER, S.; BROWN, D.; MORGAN, D. Early qualitative risk assessment of the emerging zoonotic potential of animal diseases. BMJ, v. 331, n.7527, p.1256-1260, 2005.
PATEL, M.M. et al. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg. Infec. Dis., v.14, n.8, p.1224-1231, 2008.
PEASEY, A.E. et al. Seroepidemiology and Risk factors for sporadic norovirus/Mexico Strain. J. Infect. Dis., n.11, p.2027-2036, 2004.
PERIWAL, S.B. et al. A modified cholera holotoxin CT-E29H enhances systemic and mucosal immune responses to recombinant Norwalk virus-virus like particle vaccine. Vaccine, v.21, n.5/6, p.376-385, 2003.
PHAN, T.G. et al. Genetic heterogeneity, evolution, and recombination in noroviruses. J. Med. Virol., v.79, n.9, p.1388-1400, 2007.
PRASAD, B.V. et al. X-ray crystallographic structure of the norwalk virus capsid. Science, v.286, n.5438, p.287-290, 1999.
RIBAS, M.D.E.L. et al. Norovirus and Rotavirus infection in children aged less than five years in a paediatric hospital, Havana, Cuba. Braz. J. Infec. Dis., v.19, n.2, p.222-223, 2015.
RICHARDS, A.F. et al. Evaluation of a commercial ELISA for detecting Norwalk-like virus antigen in faeces. J. Clin. Virol., n.1, p.109-115, 2003.
RUVOEN-CLOUET, N. et al. Binding of rabbit hemorrhagic disease virus to antigens of the ABH histo-blood group family. J. Virol., v.74, p.11950-11954, 2000.
SANDORA, T.J.; SHIH, M.-C.; GOLDMANN, D.A. Reducing absenteeism from gastrointestinal and respiratory illness in elementary school students: a randomized, controlled trial of an infection-control intervention. Pediatrics, v.121, n.6, p.1555-1562, 2008.
SMILEY, J.R. et al. Reverse transcription-pcr assays for detection of Bovine Enteric Caliciviruses (BEC) and Analysis of the Genetic Relationships among BEC and Human Caliciviruses. J. Clin. Microbiol., n.7, p.3089-3099, 2003.
SOMA, T. et al. Detection of Norovirus and Sapovirus from diarrheic dogs and cats in Japan. Microbiol. Immunol., v.59, n.3, p.123-128, 2015.
SUGIEDA, M. et al. Detection of Norwalk-like virus genes in the caecum contents of pigs. Arch. Virol., v.143, n.6, p.1215-1221, 1998.
SUMMA, M.; VON BONSDORFF, C.; MAUNULA, L. Pet dogs: a transmission route for human noroviruses? J. Clin. Virol., v.53, n.3, p.244-247, 2012.
TACKET, C.O. et al. Humoral, mucosal, and cellular immune responses to oral Norwalk virus-like particles in volunteers. Clin. Immunol., v.108, n.3, p.241-247, 2003.
TAN, M.; JIANG, X. The p domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J. Virol., v.79, n.22, p.14017-14030, 2005.
THEAMBOONLERS, A. et al. Complete genome analysis of a rare human G3P[9] rotavirus posing as an AU-1 like strain. Springerplus, v. 2, n. 1, p. 569-573, 2013.
TIAN, P. et al. Binding of recombinant norovirus like particle to histo-blood group antigen on cells in the lumen of pig duodenum. Res. Vet. Sci., v.83, n.3, p.410-418, 2007.
TIMENETSKY, M.C.S.T. et al. Rotavírus, adenovírus, astrovírus, calicivírus, com e sem diarréia aguda, no período de 1987 a 1988, na Grande São Paulo. Rev. Inst. Med. Trop. São Paulo, v.35, n.3, p.275-280, 1993.
VAN DER POEL,W.H. et al. Epidemiology of Norwalk-like virus infections in cattle in the Netherlands. Vet. Microbiol., v.92, n.4, p.297-309, 2003.
VAN DER POEL,W.H. et al. Norwalk-like calicivirus genes in farm animals. Emerg. Infect. Dis., v.6, n.1, p.36-41, 2000.
WANG, Q. H. et al. Development of a new microwell hybridization assay and an internal control RNA for the detection of porcine noroviruses and sapoviruses by reverse transcription-PCR. J. Virol. Methods, v.132, n.1/2, p.135-145, 2006.
WANG, Q.H. et al. Genetic diversity and recombination of porcine sapoviruses. J. Clin. Microbiol., v.43, p.5672-5963, 2005.
WIDDOWSON, M.A. et al. Outbreaks of acute gastroenteritis on cruise ships and on land: identification of a predominant circulating strain of norovirus-united states, 2002. J. Infec. Dis., v.190, n.1, p.27-36, 2004.
WIDDOWSON, M.-A. et al. Detection of serum antibodies to bovine norovirus in veterinarians and the general population in the Netherlands. J. Med. Virol., v.76, n.1, p.119-128, 2005.
WOBUS, C.E. et al. Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. Plos Biol., v.2, n.12, p.432-433, 2004.
WOBUS, C.E.; THACKRAY, L.B.; VIRGIN, H.W. Murine Norovirus: a Model System to Study Norovirus Biology and Pathogenesis. J. Virol., v.80, n.11, p.5104-5112, 2006.
XERRY, J. et al. Transmission events within outbreaks of gastroenteritis determined through analysis of nucleotide sequences of the P2 domain of genogroup II noroviruses. J. Clin. Microbiol., v.46, n.3, p.947-953, 2008.
ZAHORSKY, J. Hyperemesis hemisor the winter vomiting disease. Arch. Pediatr. Adolescent Med., v.46, p.391-395, 1929.
ZAKHOUR, M. et al. The αGal epitope of the histo-blood group antigen family is a ligand for bovine norovirus newbury2 expected to prevent cross-species transmission. Plos Pathogens, v.5, n.7, e1000504, 2009.
ZHENG, D-P. et al. Norovirus classification and proposed strain nomenclature. Virology, v.346, n.2, p.312-323, 2006.